

Biodegradable liquid mulch for weed management

Products of biocircular economy in plant protection

PlastLife meeting 24-25.4.2024

Marleena Hagner, Kimmo Rasa, Pentti Ruuttunen Natural Resources Institute Finland / Luke

LIFE21-IPE-FI-PlastLIFE

PlastLIFE-hanke saa EU:n LIFE-ohjelmasta rahoitusta, jolla hankkeen materiaalit on tuotettu. Materiaalien sisältö edustaa ainoastaan hankkeen omia näkemyksiä, joista CINEA/Euroopan komissio ei ole vastuussa.

plastlife.fi | #plastlife

Need for sustainable replacements for black plastics and synthetic pesticides

- Risk for new weeds and pests growing
- The use of black polyethylene (PE) mulches and pesticides should be reduced
- → need for environmentally sustainable pest and weed management solutions

Fígure: https://china-plasticfilm.en.made-in-china.com/product/vByQrzWAZSpK/China-

Black-Plastic-Strawberry-Mulch-Film-Agriculture.html

Figure: https://www.agric.wa.gov.au/grains/herbicide-application

Biodegradable liquid mulch

- To be used in food production and green building for pest and weed management
- Replace use of plastic covers
- Replace use of pesticides (glyphosate)
- Based on biobased wood and other plant derived raw materials including pyrolysis liquids
- MULCH COMPOSITION, METHOD OF MANUFACTURING AND RELATED USES, Patent granted in Finland 15.2.2019, FI127775
 - Peat based mulch
 - Fiber based mulch: patent application in progress

Liquid mulch efficiently prevents weed growth around the base of park trees

Without mulching

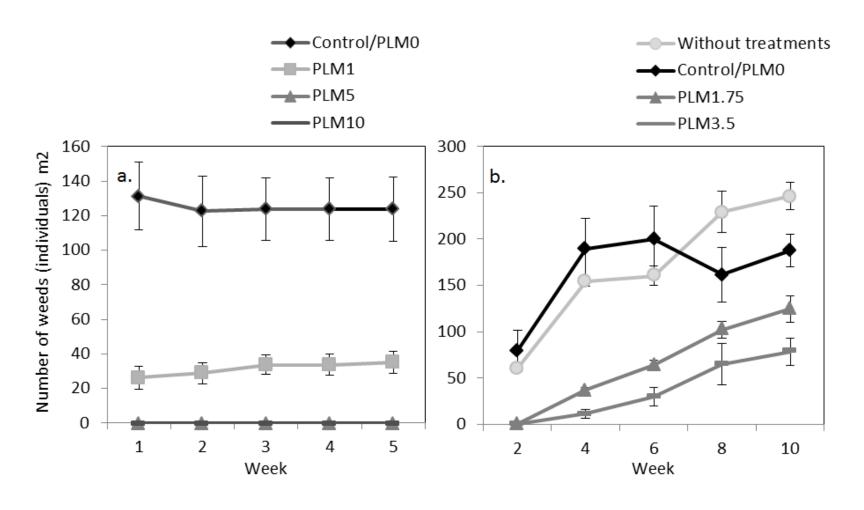
Glyphosate

Biodegradable liquid mulch

Applications

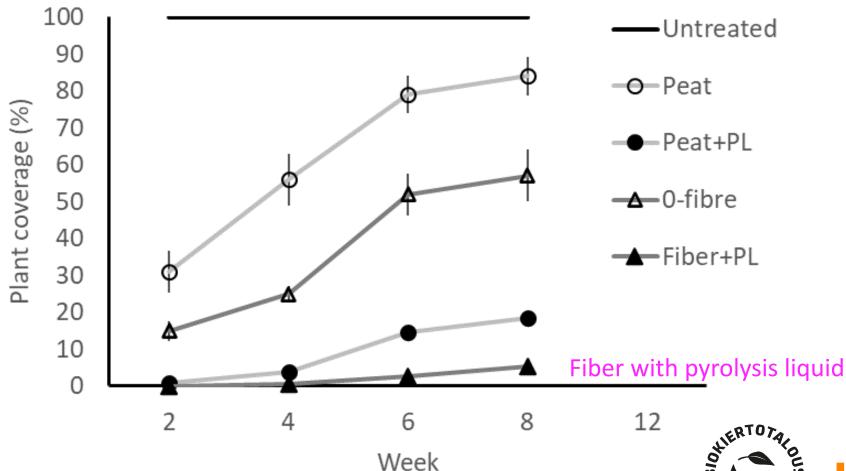
- Agriculture
- Horticulture
- Tree nursery
- City parks
- Home gardens
- •

Research and testing



Effect of peat based mulch on weed growth

- Greenhouse experiment (left)
 - PLM1 (1% pyrolysis liquid)
 - weed biomass72 80 % lower
 - > 1% PL no weeds
- Field experiment (right)
 - weed number 40% and 60% lower in PLM1.75 and PLM3.5

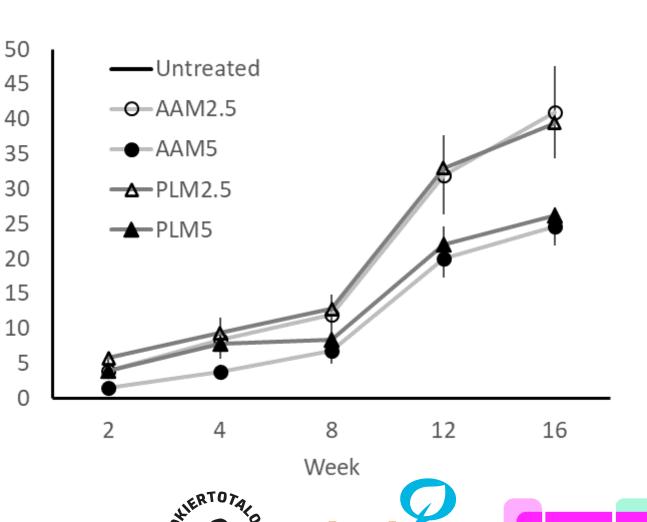


Pyrolysis liquid also improves performance of fiber mulch

LUKE

Apple garden/grass study

- Fiber, water and pyrolysis liquid were mixed in a bucket, spreading was done manually
- Similar mulch dose on each square
- Treatments with five replicates
 - 1) no mulch
 - 2) 2.5 % of PL
 - 3) 5.0 % of PL
 - 4) 2.5 % of AA (acetic acid)
 - 5) 5.0 % of AA
- Established May 2023, Jokioinen
- Weed coverage was estimated after 4, 8, 12 ja 16 weeks
- Scientific publication in progress



Apple garden/grass study

Plant coverage

- Old grass is quite hard "weed containing" envionment compared to agricultural fields
- 3 month: ca. 20 % plant coverage
 = 80 % "weed growth" reduction in extremely hard weed pressure
- Increasing of pyrolysis liquid concentration from 2.5 → 5 % improves efficacy of mulch over time

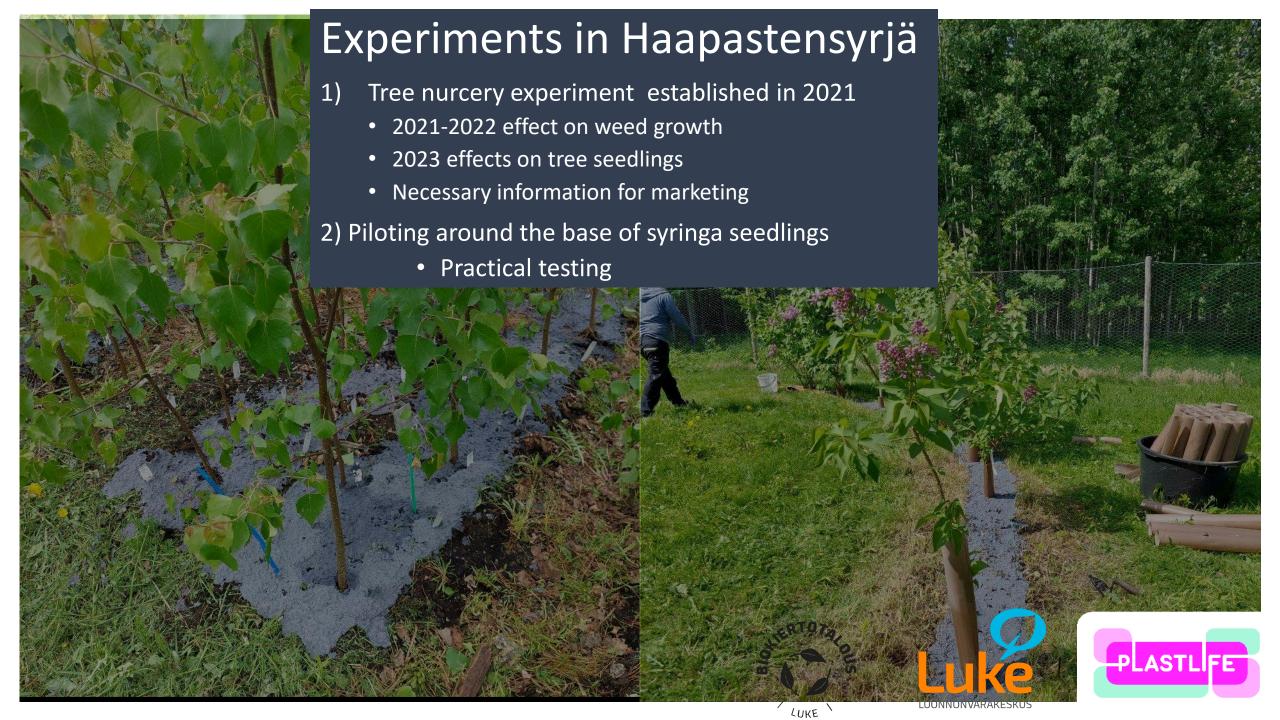
Apple garden/grass study

- Winter hardiness?
- Mulch was spread either in the end (autumn 26.10.2023) or in the beginnig of growing period (spring 15.4.2024)
- Weed coverage estimation during growth period 2024

Contr ol

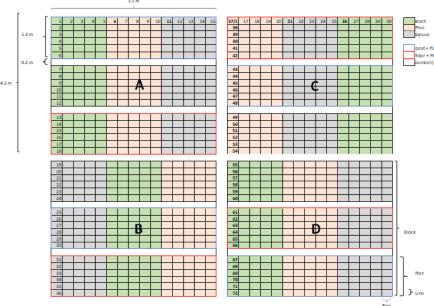
Autu mn Sprin g

Study ongoing

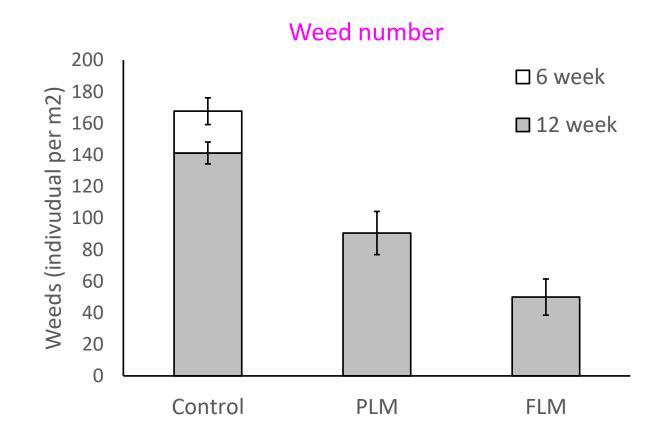


Testing in apple garden

- Around the base of the apple trees
 - Practical testing
 - Not scientific data

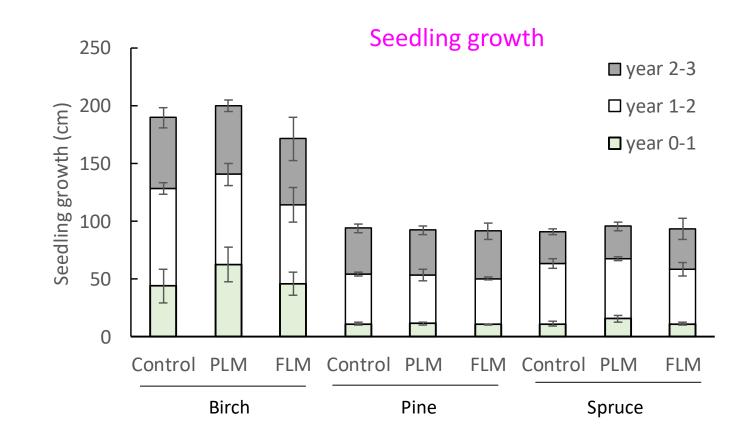

Haapastensyrjä: nursery experiment 2021

- Pine, spruce and birch seedlings
- Peat and fiber based mulches + (2 cm layer) + controls
- Pyrolysis liquid concentration 4 %
- Analyses
 - Weed uprooted and calculated after 6 ja 12 wk
 - Tree seedling height after growing periods 2021-2023
- 2023 mulch spread in contact to plants to see the effect of direct contact



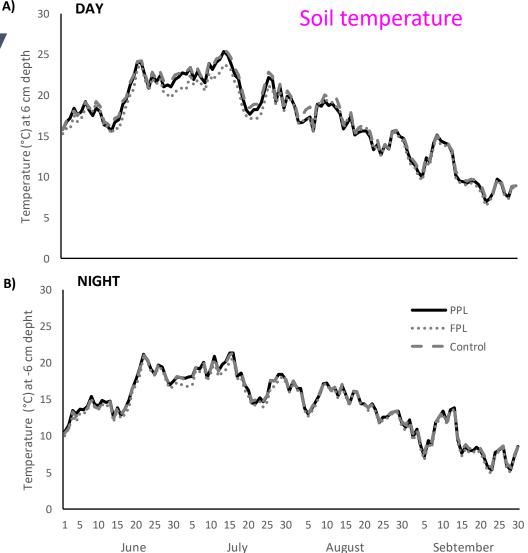
Haapasten(syrjä) nursery experiment

- 6 wk: weeds only in controls
- 12 wk: in fiber mulched sites 70 % lower and peat mulced sites 46% lower in compared to control
 - Statictic difference only between control and fiber mulch
- Expert assessment: mulching can reduce remarkably labour need for weed uprooting during growing period



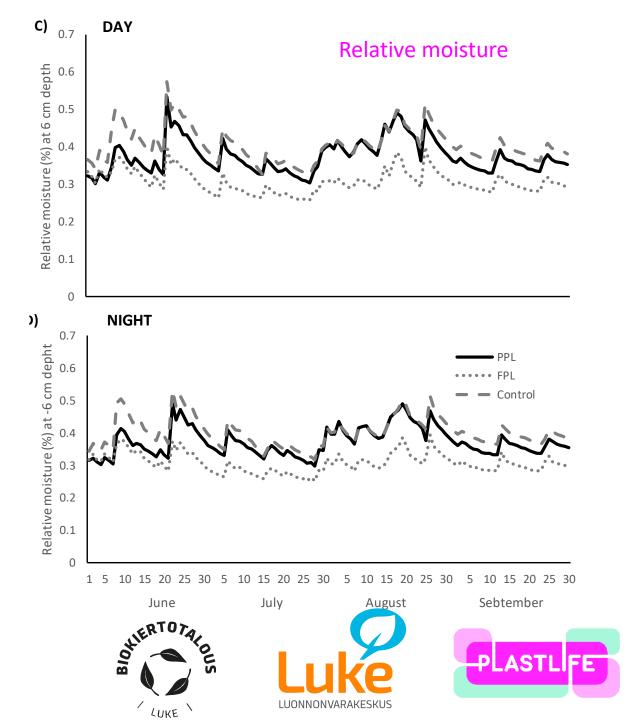
Haapasten(syrjä) nursery experiment

- During first spreading time of mulches the age of tree seedlings was 1-2 years
 - Two weeks period between mulching and planting
- With older seedlings: direct contact with mulch had no effect on plant seedlings
 - Only few seedlings died
- Visual esitimation: lighter birche leaves in fist year in fiber mulched sites?
 - Impacts on nitrogen availability?



Haapasten(syrjä) nursery experiment

- Soil temperature below mulches (-6 cm) measured in growth period 2021
- At day time temperature below fiber mulch 0.4-1.1°C lower
- At night time, similar trend, but not statically significant difference
- Fiber mulch WITHOUT colouring agents
 - Good or bad, depends on climate coditions!



Haapasten(syrjä) nursery experiment

- Relative moisture content below mulch (-6 cm) during growing period 2021
- Relative moisture lower below fiber mulch
 - Difference between mulches not significant
- Top vs. below irrigation?
- Does difference matter → no differences in seedlings growt!

Laboratory piloting: colour, additives

Transparency, optimal moisture content, hardiness

Spreading technology – development ongoing

- Development of spreding technology is one aim of PlastLife -project WP 5.4.1
 - Pilot scale unit developed
- Several technologies developed globally
- Spreading technology is not a bottle nect
 - Should be developed in specific conditions where used by utilizing exicting technologies

Evironmental issues?

- Biodegradation: readily biodegradable having 76% biodegradation during first 10 day
 - OECD (1992) guideline 301F
- Onion field experiment: PL concentration 350 ml/m^{2, s}oil samples after 1 and 3 months
 - No remains were found
- Field experiment: no differences on the abundance of soil nematodes or enchytraeids
- The sensitivity of different species on PL was variable among the taxa:
 - D. magna (EC50 155 mg L⁻¹) < L. variegates (LC50 176 mg L⁻¹) < L.minor (IC50 229-231 mg L⁻¹) < D. rerio (LC50 320 mg L⁻¹) < A. aquaticus (LC50 397 mg L⁻¹) < S. gracilis (LC50 > 381 mg L⁻¹) < Lymnaea sp. (LC50 866 mg L⁻¹)
 - EC50 for juvenile production of *F. candida* was 5100 mg kg⁻¹ (dw)
 - 14-day LC50 for *A. caliginosa* was 6560 mg kg⁻¹ (dw)

More details

- https://www.materiaalitkiertoon.fi//fi-FI/PlastLIFE
- https://youtu.be/Mv3WymrPrsU
- ➤ Hagner M et al. 2021. Weed Res 60:182- 193
 - https://doi.org/10.1111/wre.12411
- ➤ Hagner M et al. 2020. Environ Technol Inno 20:101154
 - https://doi.org/10.1016/j.eti.2020.101154
- ➤ MULCH COMPOSITION, METHOD OF MANUFACTURING AND RELATED USES, Patent granted in Finland 15.2.2019, FI127775
 - https://worldwide.espacenet.com/patent/search/family/060654964/publication/FI1 27775B?q=luonnonvarakeskus

Thank you!

Contact:

marleena.hagner@luke.fi

kimmo.rasa@luke.fi

<u>pentti.ruuttunen@luke.fi</u>

LIFE21-IPE-FI-PlastLIFE

PlastLIFE-hanke saa EU:n LIFE-ohjelmasta rahoitusta, jolla hankkeen materiaalit on tuotettu. Materiaalien sisältö edustaa ainoastaan hankkeen omia näkemyksiä, joista CINEA/Euroopan komissio ei ole vastuussa.

